第 289 场周赛
Problem A - 计算字符串的数字和
方法一:模拟
按要求模拟即可。
- 时间复杂度 。
- 空间复杂度 。
参考代码(Python 3)
class Solution:
def digitSum(self, s: str, k: int) -> str:
while len(s) > k:
s = ''.join(str(sum(map(int, s[i:i+k])))
for i in range(0, len(s), k))
return s
Problem B - 完成所有任务需要的最少轮数
方法一:计数
- 时间复杂度 。
- 空间复杂度 。
参考代码(Python 3)
class Solution:
def minimumRounds(self, tasks: List[int]) -> int:
values = list(collections.Counter(tasks).values())
return -1 if values.count(1) > 0 else sum((val - 1) // 3 + 1 for val in values)
Problem C - 转角路径的乘积中最多能有几个尾随零
方法一:前缀和 + 枚举
- 时间复杂度 。
- 空间复杂度 。
参考代码(C++)
class Solution {
public:
int maxTrailingZeros(vector<vector<int>>& grid) {
int n = grid.size(), m = grid[0].size();
vector<vector<int>> two(n, vector<int>(m)), five(n, vector<int>(m));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
int val = grid[i][j];
while (val % 2 == 0) {
two[i][j]++;
val /= 2;
}
while (val % 5 == 0) {
five[i][j]++;
val /= 5;
}
}
}
vector<vector<int>> row2(n, vector<int>(m + 1)),
row5(n, vector<int>(m + 1)), col2(m, vector<int>(n + 1)),
col5(m, vector<int>(n + 1));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
row2[i][j + 1] = row2[i][j] + two[i][j];
row5[i][j + 1] = row5[i][j] + five[i][j];
}
}
for (int j = 0; j < m; ++j) {
for (int i = 0; i < n; ++i) {
col2[j][i + 1] = col2[j][i] + two[i][j];
col5[j][i + 1] = col5[j][i] + five[i][j];
}
}
int ans = 0;
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j) {
int zt = two[i][j], zf = five[i][j];
int ut = col2[j][i], uf = col5[j][i];
int lt = row2[i][j], lf = row5[i][j];
int rt = row2[i][m] - row2[i][j + 1], rf = row5[i][m] - row5[i][j + 1];
int dt = col2[j][n] - col2[j][i + 1], df = col5[j][n] - col5[j][i + 1];
vector<int> possible{
min(ut + lt + zt, uf + lf + zf), min(ut + rt + zt, uf + rf + zf),
min(dt + lt + zt, df + lf + zf), min(dt + rt + zt, df + rf + zf)};
ans = max(ans, *max_element(possible.begin(), possible.end()));
}
return ans;
}
};
Problem D - 相邻字符不同的最长路径
方法一:DFS
- 时间复杂度 。
- 空间复杂度 。
参考代码(C++)
class Solution {
string t;
int n, ans;
vector<vector<int>> adj;
int dfs(int u) {
int fst = 0, sec = 0;
for (int v : adj[u]) {
int clen = dfs(v);
if (t[v] == t[u])
continue;
if (clen > fst) {
sec = fst;
fst = clen;
} else if (clen > sec)
sec = clen;
}
ans = max(ans, fst + sec + 1);
return fst + 1;
}
public:
int longestPath(vector<int>& parent, string s) {
t = s;
n = s.size();
adj = vector<vector<int>>(n);
for (int i = 0; i < n; ++i) {
int p = parent[i];
if (p != -1) adj[p].push_back(i);
}
ans = 0;
dfs(0);
return ans;
}
};