Skip to main content

第 287 场周赛

Problem A - 转化时间需要的最少操作数

方法一:模拟

按要求模拟即可。

  • 时间复杂度 O(1)\mathcal{O}(1)
  • 空间复杂度 O(1)\mathcal{O}(1)
参考代码(Python 3)
class Solution:
def convertTime(self, current: str, correct: str) -> int:
sh, sm = map(int, current.split(':'))
th, tm = map(int, correct.split(':'))
delta = (th * 60 + tm) - (sh * 60 + sm)
ans = 0
for unit in [60, 15, 5, 1]:
ans += delta // unit
delta %= unit
return ans
参考代码(C++)
int seconds(string s) {
return stoi(s.substr(0, 2)) * 60 + stoi(s.substr(3, 2));
}

class Solution {
public:
int convertTime(string current, string correct) {
int start = seconds(current);
int end = seconds(correct);
int delta = end - start;
int ans = 0;
if (delta >= 60)
ans += delta / 60, delta %= 60;
if (delta >= 15)
ans += delta / 15, delta %= 15;
if (delta >= 5)
ans += delta / 5, delta %= 5;
return ans + delta;
}
};

Problem B - 找出输掉零场或一场比赛的玩家

方法一:模拟

按要求模拟即可。记得最后对结果排序。

  • 时间复杂度 O(NlogN)\mathcal{O}(N\log N)
  • 空间复杂度 O(N)\mathcal{O}(N)
参考代码(Python 3)
class Solution:
def findWinners(self, matches: List[List[int]]) -> List[List[int]]:
all_players = set(itertools.chain(*matches))
lose_count = collections.Counter([loser for winner, loser in matches])
return [sorted([player for player in all_players if lose_count[player] == i]) for i in range(2)]
参考代码(C++)
class Solution {
public:
vector<vector<int>> findWinners(vector<vector<int>>& matches) {
unordered_map<int, int> cnt;
for (auto &v : matches)
cnt[v[0]] += 0, cnt[v[1]]++;
vector<vector<int>> ans(2);
for (auto [k, v] : cnt)
if (v <= 1)
ans[v].push_back(k);
sort(ans[0].begin(), ans[0].end());
sort(ans[1].begin(), ans[1].end());
return ans;
}
};

Problem C - 每个小孩最多能分到多少糖果

方法一:二分答案

我们发现,“规定每个小孩拿 x 个糖果,能否给 k 个小孩都发足糖果”这个问题具有决策单调性,因此可以二分答案解决本题。

  • 时间复杂度 O(NlogC)\mathcal{O}(N\log C)
  • 空间复杂度 O(1)\mathcal{O}(1)
参考代码(C++)
class Solution {
public:
int maximumCandies(vector<int>& candies, long long k) {
long long lo = 1, hi = 1e12;
while (lo <= hi) {
long long mid = (lo + hi) >> 1;
long long can = 0;
for (int candy : candies)
can += candy / mid;
if (can >= k)
lo = mid + 1;
else
hi = mid - 1;
}
return hi;
}
};

Problem D - 加密解密字符串

方法一:预先加密字典中的所有字符串

反向思维:解密具有多解性,但加密过程是确定的。对于解密操作,我们只需要预先将字典中的所有字符串加密,就可以直接求出与目标串对应的原串个数。

  • 时间复杂度 O(ΣK)\mathcal{O}(\Sigma\cdot K),其中 Σ\Sigma 是所有栈的元素数目之和。
  • 空间复杂度 O(K)\mathcal{O}(K)
参考代码(Python 3)
class Encrypter:

def __init__(self, keys: List[str], values: List[str], dictionary: List[str]):
self.d = {key: value for key, value in zip(keys, values)}
self.cnt = collections.Counter(self.encrypt(word) for word in dictionary)


def encrypt(self, word1: str) -> str:
return ''.join(self.d[ch] for ch in word1) if all(ch in self.d for ch in word1) else ''


def decrypt(self, word2: str) -> int:
return self.cnt[word2]
参考代码(C++)
class Encrypter {
vector<string> v;
unordered_map<string, int> cnt;

public:
Encrypter(vector<char>& keys, vector<string>& values, vector<string>& dictionary) {
v = vector<string>(26);

for (int i = 0; i < keys.size(); ++i)
v[keys[i] - 'a'] = values[i];

for (auto &s : dictionary)
cnt[encrypt(s)]++;
}

string encrypt(string word1) {
string result;
for (char ch : word1) {
if (v[ch - 'a'].empty())
return "";
result += v[ch - 'a'];
}
return result;
}

int decrypt(string word2) {
return cnt[word2];
}
};

方法二:字典树

我们也可以用字典树来处理解密操作。

参考代码(C++)
struct Trie {
bool flag{};
Trie* children[26]{};

Trie() {}
};

class Encrypter {
Trie *root;
vector<string> v;
unordered_map<string, vector<int>> mp;

public:
Encrypter(vector<char>& keys, vector<string>& values, vector<string>& dictionary) {
v = vector<string>(26);

for (int i = 0; i < keys.size(); ++i)
v[keys[i] - 'a'] = values[i], mp[values[i]].push_back(keys[i] - 'a');

root = new Trie();
for (auto s : dictionary) {
Trie *p = root;
for (char c : s) {
if (p->children[c - 'a'] == nullptr)
p->children[c - 'a'] = new Trie();
p = p->children[c - 'a'];
}
p->flag = true;
}
}

string encrypt(string word1) {
string result;
for (char ch : word1)
if (v[ch - 'a'].empty())
result.push_back(ch);
else
result += v[ch - 'a'];
return result;
}

int decrypt(string word2) {
vector<Trie*> possible{root};

for (int i = 0; i < word2.size(); i += 2) {
vector<Trie*> nxt;
for (int j : mp[word2.substr(i, 2)]) {
for (Trie *p : possible) {
if (p->children[j] != nullptr)
nxt.push_back(p->children[j]);
}
}

possible = move(nxt);
}

int ans = 0;

for (Trie *p : possible)
ans += p->flag;

return ans;
}
};